Física moderna
La física moderna comienza a principios del siglo XX, cuando el alemán Max Planck, investiga sobre el “cuanto” de energía,Planck decía que eran partículas de energía indivisibles, y que éstas no eran continuas como lo decía la física clásica, por ello nace esta nueva rama de la física que estudia las manifestaciones que se producen en los átomos, los comportamientos de las partículas que forman la materia y las fuerzas que las rigen. (También se le llama física cuántica).
En los temas anteriormente tratados, la física clásica no servía para resolver los problemas presentados, ya que estos se basan en certezas y la física moderna en probabilidades, lo que provocó dificultades para adaptarse a las nuevas ideas. Los temas tratados anteriormente no podían ser resueltos por la física clásica.
En 1905, Albert Einstein, publicó una serie de trabajos que revolucionaron la física, principalmente representados por “La dualidad onda-partícula de la luz” y “La teoría de la relatividad” entre otros. Estos y los avances científicos como el descubrimiento de la existencia de otras galaxias, la superconductividad, el estudio del núcleo del átomo, y otros, permitieron lograr que años más tarde surgieran avances tecnológicos, como la invención del televisor, los rayos x, el radar, fibra óptica, el computador etc.
La misión final de la física actual es comprender la relación que existe entre las fuerzas que rigen la naturaleza: la gravedad, el electromagnetismo, la fuerza nuclear fuerte y la fuerza nuclear débil. Comprender y lograr una teoría de unificación, para así poder entender el universo y sus partículas. Se conoce, generalmente, por estudiar los fenómenos que se producen a la velocidad de la luz o valores cercanos a ella o cuyas escalas espaciales son del orden del tamaño del átomo o inferiores.
Se divide en:
La mecánica cuántica
La teoria de la relatividad
Casi todo lo planteado en el siglo XIX fue puesto en duda y al final fue remplazado durante el siglo XX, y de esta misma forma puede ocurrir actualmente, a medida que se produzcan resultados las nuevas investigaciones, y se materialicen los nuevos conocimientos que se irán adquiriendo durante este nuevo siglo.
Teoría de la relatividad especial
Teoría de la Relatividad, parte de Walk of Ideas, en la Isla de los Museos (Berlín). Festejando el Año mundial de la física 2005 en el centenario de la publicación de la ecuación más famosa del mundo.
La Teoría de la relatividad especial, también llamada Teoría de la relatividad restringida, es una teoría física publicada en 1905 por Albert Einstein. Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de obtener todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experimentación realizada en un sistema de referencia inercial se desarrollará de manera idéntica en cualquier otro sistema inercial.
La Teoría de la relatividad especial estableció nuevas ecuaciones que permitían pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, siendo uno de los más asombrosos y más famosos la llamada paradoja de los gemelos.
Formulación de la Relatividad Especial
La relatividad especial a pesar de poder ser descrita con facilidad por medio de la mecánica clásica y ser de fácil entendimiento, tiene una compleja matemática de por medio. Aquí se describe a la relatividad especial en la forma de la covariancia de Lorentz. La posición de un evento en el espacio-tiempo está dado por un vector contravariante cuatridimensional, sus componentes son:Principio de Relatividad
Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (la invariancia galileana) se mantiene para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría del éter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, este principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio y proponer las transformadas de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.
Causalidad e imposibilidad de movimientos más rápidos que la luz
Previo a esta teoría, el concepto de causalidad estaba determinado: para una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace, se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se "crea" un cono de luz de posibilidades (Véase gráfico adjunto).Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar qué causa del cono del pasado provocará el efecto en el cono del futuro.
Asumiendo el principio de causalidad obtenemos que ninguna partícula de masa positiva puede viajar más rápido que la luz. A pesar que este concepto no es tan claro para la relatividad general.
Los principios de general covariancia y de acoplamiento mínimo
En un espacio-tiempo curvo, las leyes de la física se modifican mediante el Principio de acoplamiento mínimo, que supone que las ecuaciones matemáticas en cuya virtud se expresan aquellas experimentan las siguientes modificaciones:- La derivada ordinaria es sustituida por la derivada covariante.
- La métrica de Minkowski es sustituida por una formulación general del tensor métrico.